Publication

Epigenetic timing effects on child developmental outcomes: a longitudinal meta-regression of findings from the Pregnancy And Childhood Epigenetics Consortium

Open Access
Genome Medicine
2024

Background

DNA methylation (DNAm) is a developmentally dynamic epigenetic process; yet, most epigenome-wide association studies (EWAS) have examined DNAm at only one timepoint or without systematic comparisons between timepoints. Thus, it is unclear whether DNAm alterations during certain developmental periods are more informative than others for health outcomes, how persistent epigenetic signals are across time, and whether epigenetic timing effects differ by outcome.

Methods

We applied longitudinal meta-regression models to published meta-analyses from the PACE consortium that examined DNAm at two timepoints—prospectively at birth and cross-sectionally in childhood—in relation to the same child outcome (ADHD symptoms, general psychopathology, sleep duration, BMI, asthma). These models allowed systematic comparisons of effect sizes and statistical significance between timepoints. Furthermore, we tested correlations between DNAm regression coefficients to assess the consistency of epigenetic signals across time and outcomes. Finally, we performed robustness checks, estimated between-study heterogeneity, and tested pathway enrichment.

Results

Our findings reveal three new insights: (i) across outcomes, DNAm effect sizes are consistently larger in childhood cross-sectional analyses compared to prospective analyses at birth; (ii) higher effect sizes do not necessarily translate into more significant findings, as associations also become noisier in childhood for most outcomes (showing larger standard errors in cross-sectional vs prospective analyses); and (iii) DNAm signals are highly time-specific, while also showing evidence of shared associations across health outcomes (ADHD symptoms, general psychopathology, and asthma). Notably, these observations could not be explained by sample size differences and only partly to differential study-heterogeneity. DNAm sites changing associations were enriched for neural pathways.

Conclusions

Our results highlight developmentally-specific associations between DNAm and child health outcomes, when assessing DNAm at birth vs childhood. This implies that EWAS results from one timepoint are unlikely to generalize to another. Longitudinal studies with repeated epigenetic assessments are direly needed to shed light on the dynamic relationship between DNAm, development and health, as well as to enable the creation of more reliable and generalizable epigenetic biomarkers. More broadly, this study underscores the importance of considering the time-varying nature of DNAm in epigenetic research and supports the potential existence of epigenetic “timing effects” on child health.

Access type

Open

Journal name

Genome Medicine

Volume

Volume 17, Issue 39

Publication date

2024

DOI identification

10.1186/s13073-025-01451-7

Sign Up to Our Newsletter

Stay informed and inspired — sign up for our newsletter to receive the latest updates, research insights, and ways to get involved directly in your inbox!

"*" indicates required fields

This field is for validation purposes and should be left unchanged.
Born in Bradford letterpressed print
Born in Bradford logo
Privacy

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

For more information, please visit our Privacy Policy.